Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
MAbs ; 15(1): 2222874, 2023.
Article in English | MEDLINE | ID: covidwho-20243537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Antibodies induced by SARS-CoV-2 infection or vaccination play pivotal roles in the body's defense against the virus; many monoclonal antibodies (mAbs) against SARS-CoV-2 have been cloned, and some neutralizing mAbs have been used as therapeutic drugs. In this study, we prepared an antibody panel consisting of 31 clones of anti-SARS-CoV-2 mAbs and analyzed and compared their biological activities. The mAbs used in this study were classified into different binding classes based on their binding epitopes and showed binding to the SARS-CoV-2 spike protein in different binding kinetics. A multiplex assay using the spike proteins of Alpha, Beta, Gamma, Delta, and Omicron variants clearly showed the different effects of variant mutations on the binding and neutralization activities of different binding classes of mAbs. In addition, we evaluated Fcγ receptor (FcγR) activation by immune complexes consisting of anti-SARS-CoV-2 mAb and SARS-CoV-2 pseudo-typed virus, and revealed differences in the FcγR activation properties among the binding classes of anti-SARS-CoV-2 mAbs. It has been reported that FcγR-mediated immune-cell activation by immune complexes is involved in the promotion of immunopathology of COVID-19; therefore, differences in the FcγR-activation properties of anti-SARS-CoV-2 mAbs are among the most important characteristics when considering the clinical impacts of anti-SARS-CoV-2 mAbs.


Subject(s)
Antigen-Antibody Complex , COVID-19 , Humans , Receptors, IgG , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal
2.
Front Immunol ; 14: 1134178, 2023.
Article in English | MEDLINE | ID: covidwho-2318745

ABSTRACT

Background: The drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome represents a severe hypersensitivity reaction. Up-to-date treatment is based on withdrawal of medication, supportive care, and immunosuppression using high-dose corticosteroid (CS) therapy. However, evidence-based data are lacking regarding second-line therapy for steroid-resistant or steroid-dependent patients. Objectives: We hypothesize that the interleukin (IL)-5 axis plays a critical role in the pathophysiology of DRESS; hence, inhibition of this signaling pathway could offer a potential therapy for steroid-dependent and/or steroid-resistant cases, and it may offer an alternative to CS therapy in certain patients more prone to CS toxicity. Methods: Herein, we collected worldwide data on DRESS cases treated with biological agents targeting the IL-5 axis. We reviewed all cases indexed in PubMed up to October 2022 and performed a total analysis including our center experience with two additional novel cases. Results: A review of the literature yielded 14 patients with DRESS who were treated with biological agents targeting the IL-5 axis as well as our two new cases. Reported patients are characterized by a female-to-male ratio of 1:1 and a mean age of 51.8 (17-87) years. The DRESS-inducing drugs, as expected from the prospective RegiSCAR study, were mostly antibiotics (7/16), as follows: vancomycin, trimethoprim-sulfamethoxazole, ciprofloxacin, piperacillin-tazobactam, and cefepime. DRESS patients were treated with anti-IL-5 agents (mepolizumab and reslizumab) or anti-IL-5 receptor (IL-5R) biologics (benralizumab). All patients have clinically improved under anti-IL-5/IL-5R biologics. Multiple doses of mepolizumab were needed to achieve clinical resolution, whereas a single dose of benralizumab was often sufficient. Relapse was noted in one patient receiving benralizumab treatment. One patient receiving benralizumab had a fatal outcome, although mortality was probably related to massive bleeding and cardiac arrest due to coronavirus disease 2019 (COVID-19) infection. Conclusion: Current treatment guidelines for DRESS are based on case reports and expert opinion. Understanding the central role of eosinophils in DRESS pathogenicity emphasizes the need for future implementation of IL-5 axis blockade as steroid-sparing agents, potential therapy to steroid-resistant cases, and perhaps an alternative to CS treatment in certain DRESS patients more prone to CS toxicity.


Subject(s)
Drug Hypersensitivity Syndrome , Eosinophilia , Interleukin-5 , Female , Humans , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Drug Hypersensitivity Syndrome/diagnosis , Drug Hypersensitivity Syndrome/drug therapy , Drug Hypersensitivity Syndrome/etiology , Eosinophilia/drug therapy , Eosinophilia/complications , Prospective Studies , Interleukin-5/metabolism
3.
Monoclon Antib Immunodiagn Immunother ; 42(2): 77-94, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2318494

ABSTRACT

Monoclonal antibodies (mAbs) had received emergency use authorization for mild-to-moderate coronavirus disease 2019 (COVID-19) or for prophylaxis against COVID-19, including casirivimab plus imdevimab (C+I), bamlanivimab plus etesevimab (B+E), tixagevimab plus cilgavimab (T+CG), and sotrovimab (S) and bebtelovimab (BEB). This systematic review was done to assess the efficacy and safety of the same. PubMed, Embase, Scopus, medRxiv, bioRxiv, and FDA fact sheets were searched for the studies published between January 2021 and May 2022, and appropriate search terms related to the mentioned mAbs were used for data collection. Review included original research including randomized clinical trials and observational studies published or preprints. Studies included in the review had compared with placebo or standard of care or no treatment or mAbs with each other and also of various doses. Data extraction was done and reviewed the same for both efficacy and safety. Total of 20 studies were included in this review. The rate of hospitalization within 30 days showed ∼2% in comparison to ∼7% with placebo. Significant reduction in viral load was more observed with combination mAbs. Combination therapy showed faster virological cure against the Gamma variant. With C + I as postexposure prophylaxis (PEP), 29.0% of asymptomatic participants developed symptomatic COVID-19. Pre-exposure prophylaxis with T+CG reduced the incidence of infection by 77%. Infusion-related reaction was the most common adverse event (AE). The neutralizing mAbs reduced hospitalization in mild-to-moderate patients with infusion-related reactions as common AE. The response was better in the seronegative patients. Most of these studies were conducted in unvaccinated individuals and against Alpha, Gamma, and Delta variants.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2252360

ABSTRACT

Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution. Encouraging results have been shown in both preclinical and clinical studies. Thus, intratumor immunotherapy as a new strategy may retain efficacy while increasing safety. This approach is still an exploratory frontier in cancer research and opens up new possibilities for next-generation personalized medicine. Local intratumor delivery can be achieved through many means, but an attractive approach is the use of gene therapy vectors expressing mAbs inside the tumor mass. Here, we summarize basic, translational, and clinical results of intratumor mAb delivery, together with descriptions of non-viral and viral strategies for mAb delivery in preclinical and clinical development. Currently, this is an expanding research subject that will surely play a key role in the future of oncology.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Humans , Antibodies, Monoclonal/therapeutic use , Neoplasms/drug therapy , Immunotherapy/methods , Precision Medicine
5.
Expert Rev Anti Infect Ther ; 20(12): 1529-1535, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2269185

ABSTRACT

INTRODUCTION: Monoclonal antibodies (mAbs) have been authorized for the treatment of COVID-19 in pediatric populations, however, there is a lack of evidence for their use in these populations. AREAS COVERED: We outline the evidence of mAbs for COVID-19, discuss their use in the treatment of COVID-19 infection for pediatric patients, and consider alternative treatment options and challenges to COVID-19 drug approvals. EXPERT OPINION: Limited evidence exists for the safety and efficacy of mAbs to treat COVID-19 in children as new variants emerge. In rare pediatric outpatient settings, such as profound immunodeficiency or severe pulmonary disease, the benefits of antiviral treatment for COVID-19 likely outweigh the relatively small risks. However, for the great majority of pediatric patients, mAb treatment is likely not indicated. Small molecule antiviral therapies are another potential treatment for COVID-19 in children in an outpatient setting, though neither mAb nor small molecule antiviral treatments have significant supporting evidence in children and developing a strong evidence base for these decisions will be challenging if not impractical. Ultimately, these decisions are likely to be made at the level of individual cases using expert opinion as the primary guiding principle.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , Humans , Child , Antibodies, Monoclonal/adverse effects , Antiviral Agents/therapeutic use
6.
Cell Rep Med ; 3(7): 100678, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-2042205

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) are among the treatments recommended for high-risk ambulatory persons with coronavirus 2019 (COVID-19). Here, we study viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial (ClinicalTrials.gov: NCT04518410). Viral load by qPCR and viral culture are performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAbs results in rapid clearance of culturable virus. One day after treatment, 0 of 28 (0%) participants receiving mAbs and 16 of 39 (41%) receiving placebo still have culturable virus (p < 0.0001). Recrudescence of culturable virus is detected in three participants with emerging mAb resistance and viral RNA rebound. While further studies are necessary to fully define the relationship between shed culturable virus and transmission, these results raise the possibility that mAbs may offer immediate (household) and public-health benefits by reducing onward transmission.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Humans , SARS-CoV-2
7.
Front Plant Sci ; 13: 956741, 2022.
Article in English | MEDLINE | ID: covidwho-2039699

ABSTRACT

Monoclonal antibodies are considered to be highly effective therapeutic tools for the treatment of mild to moderate COVID-19 patients. In the present work, we describe the production of two SARS-CoV-2 human IgG1 monoclonal antibodies recognizing the spike protein receptor-binding domain (RBD) and endowed with neutralizing activity (nAbs) in plants. The first one, mAbJ08-MUT, was previously isolated from a COVID-19 convalescent patient and Fc-engineered to prolong the half-life and reduce the risk of antibody-dependent enhancement. This nAb produced in mammalian cells, delivered in a single intramuscular administration during a Phase I clinical study, was shown to (i) be safe and effectively protect against major variants of concern, and (ii) have some neutralizing activity against the recently emerged omicron variant in a cytopathic-effect-based microneutralization assay (100% inhibitory concentration, IC100 of 15 µg/mL). The second antibody, mAb675, previously isolated from a vaccinated individual, showed an intermediate neutralization activity against SARS-CoV-2 variants. Different accumulation levels of mAbJ08-MUT and mAb675 were observed after transient agroinfiltration in Nicotiana benthamiana plants knocked-out for xylosil and fucosil transferases, leading to yields of ~35 and 150 mg/kg of fresh leaf mass, respectively. After purification, as a result of the proteolytic events affecting the hinge-CH2 region, a higher degradation of mAb675 was observed, compared to mAbJ08-MUT (~18% vs. ~1%, respectively). Both nAbs showed a human-like glycosylation profile, and were able to specifically bind to RBD and compete with angiotensin-converting enzyme 2 binding in vitro. SARS-CoV-2 neutralization assay against the original virus isolated in Wuhan demonstrated the high neutralization potency of the plant-produced mAbJ08-MUT, with levels (IC100 < 17 ng/mL) comparable to those of the cognate antibody produced in a Chinese hamster ovary cell line; conversely, mAb675 exhibited a medium neutralization potency (IC100 ~ 200 ng/mL). All these data confirm that plant expression platforms may represent a convenient and rapid production system of potent nAbs to be used both in therapy and diagnostics in pandemic emergencies.

8.
Front Med (Lausanne) ; 9: 934169, 2022.
Article in English | MEDLINE | ID: covidwho-2002495

ABSTRACT

Patients with immune-mediated diseases (IMID) such as systemic sclerosis (SSc), who are treated with B cell depleting treatments, are at risk for developing severe COVID-19 due to inadequate humoral immune response. During B cell depletion, therapeutic substitution of neutralizing monoclonal antibodies against the SARS-CoV-2 spike protein (mAbs) might be helpful to prevent severe COVID-19. It has been shown, that in non-IMID patients mABs reduce SARS-CoV-2 viral load and lower the risk of COVID-19 associated hospitalization or death. However, there are limited data on the effect of mAbs in IMID patients after exposure, especially in patients treated with B cell depleting agents. Herein, we report a case of a rituximab treated SSc patient who developed COVID-19 and was successfully treated with a combination of mAbs (casirivimab/imdevimab). With this case we show that IMID patients may benefit from post-exposure administration of mAbs. In our case treatment with neutralizing autoantibodies was safe and a possible contributor in protecting the patient from mechanical ventilation and eventually death. We frame this case within the current evidence from the literature and provide a perspective on the future potential role of mAbs for treating IMID patients suffering from COVID-19.

9.
3 Biotech ; 12(9): 227, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1990802

ABSTRACT

SARS-CoV-2, the newly emerged virus of the Coronaviridae family is causing havoc worldwide. The novel coronavirus 2019 was first reported in Wuhan, China marked as the third highly infectious pathogenic virus of the twenty-first century. The typical manifestations of COVID-19 include cough, sore throat, fever, fatigue, loss of sense of taste and difficulties in breathing. Large numbers of SARS-CoV-2 infected patients have mild to moderate symptoms, however severe and life-threatening cases occur in about 5-10% of infections with an approximately 2% mortality rate. For the treatment of SARS-CoV-2, the use of neutralizing monoclonal antibodies (mAbs) could be one approach. The receptor binding domain (RBD) and N-terminal domain (NTD) situated on the peak of the spike protein (S-Protein) of SARS-CoV-2 are immunogenic in nature, therefore, can be targeted by neutralizing monoclonal antibodies. Several bioinformatics approaches highlight the identification of novel SARS-CoV-2 epitopes which can be targeted for the development of COVID-19 therapeutics. Here we present a summary of neutralizing mAbs isolated from COVID-19 infected patients which are anticipated to be a better therapeutic alternative against SARS-CoV-2. However, provided the vast escalation of the disease worldwide affecting people from all strata, affording expensive mAb therapy will not be feasible. Hence other strategies are also being employed to find suitable vaccine candidates and antivirals against SARS-CoV-2 that can be made easily available to the population.

10.
Mediterr J Hematol Infect Dis ; 14(1): e2022050, 2022.
Article in English | MEDLINE | ID: covidwho-1988182

ABSTRACT

Background and Objective: In patients with mild-to-moderate COVID-19 and at high risk of progression, casirivimab/imdevimab and bamlanivimab/etesivimab were utilized in Umbria from late April to November 2021. This period was characterized by an initial prevalence of alpha (B1.1.1.7) and its progressive substitution with the delta variant (B1.617.2). Many delta infections occurred in patients already recently vaccinated.Our study aimed to observe the clinical outcome of patients treated with mAbs associations in a subgroup in which viral isolation was obtained, the pre and post-infusion neutralizing antibody activity against their viral isolate. Methods: In this retrospective observational study, the clinical outcome before and 30 days after infusion, the baseline neutralizing activity of sera against their viral isolate, and the titers of neutralizing antibodies (NAbTs) one-hour post-infusion relative to the type of mAbs associations were evaluated. Results: Better efficacy of the mAbs combinations relative to monotherapy regarding global hospitalization (p = 0.021) and 30 days symptoms (p<0.001) were seen. Infections after vaccination mostly occurred in the absence of neutralizing antibody titers (NAbT). SARS-CoV-2 delta variants were isolated within 2-4 months from vaccinations without NAbTs, or in the presence of high specific neutralizing activity after 5-6 months. NAbTs were higher after casirivimab/imdevimab infusion (p=0.001). Conclusions: Alpha infections occurred prevalently in unvaccinated patients or after 5-6 months, while delta infections prevailed in vaccinated ones. A poor neutralizing activity in most of these patients was seen. A higher NAbT after infusion of casirivimab/imdevimab was observed.

11.
Med Nov Technol Devices ; 15: 100159, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1966945

ABSTRACT

The mortality rate of the recent global pandemic corona virus disease 2019 (COVID-19) is currently as high as 7%. The SARS-CoV-2 virus is the culprit behind COVID-19. SARS-CoV-2 is an enveloped single-stranded RNA virus, the genome encodes four types of the structural proteins: S protein, E protein (envelope protein), M protein (matrix protein) and N protein (nucleocapsid protein). In COVID-19, monoclonal antibodies have played a significant role in diagnosis and treatment. This article briefly introduced the development of monoclonal antibodies targeting on S protein and N protein, which represents the main direction of monoclonal antibody drugs used in the diagnosis and treatment of COVID-19. Meanwhile, the traditional Chinese medicine also plays important role in the fight against COVID-19 by regulating human immunity. The article introduced the use of traditional Chinese medicine in fighting against COVID-19.

12.
IDCases ; 29: e01528, 2022.
Article in English | MEDLINE | ID: covidwho-1945122

ABSTRACT

Background: Patients having undergone B-cell-depletion with anti-CD20-antibodies have a higher risk of mortality, delayed viral clearance and prolonged infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report two cases of patients with persistent coronavirus disease 2019 (COVID-19) in association with B-cell-depletion that were treated with the monoclonal antibody Sotrovimab. Case presentation: Both patients presented with chronic symptoms of COVID-19 such as dyspnea, fatigue, and chest pain. Nasopharyngeal swabs remained positive months after the initial infection with fluctuating cycle threshold (Ct) values around 30. Both patients received a single infusion with the monoclonal SARS-CoV-2 antibody Sotrovimab, which resulted in a rapid improvement of symptoms and inflammation markers as well as negative SARS-CoV-2 swabs. A follow-up after a month showed ongoing improvement of symptoms, persistent negative SARS-CoV-2 swabs, and positive serum antibodies. Conclusion: Infusion with the monoclonal SARS-CoV-2 antibody led to rapid improvement in two patients with persistent COVID-19 after B-cell depletion.

13.
Eur J Intern Med ; 102: 17-23, 2022 08.
Article in English | MEDLINE | ID: covidwho-1944876

ABSTRACT

The clinical progression of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to critical illness is associated with a systemic and uncontrolled inflammatory response of the innate and adaptive immunity with the release of a plethora of proinflammatory cytokines termed "cytokine storm". In the absence of an effective treatment, many off-label agents from the armamentarium of rheumatology are used. Here, from the perspective of a rheumatologist, we will discuss the current therapeutic strategies in critically ill patients with SARS-CoV-2 pneumonia. Thus, we will discuss the agents that aim to target viral entry and its replication into the host cell and those focusing and targeting the inflammatory response. In this setting, many agents have been used with promising results but, not all have been approved by the International Authorities and Institutions. In the first step (viral entry), SARS-CoV-2 monoclonal antibodies and remdesivir have been approved to be used and, in the second step, corticosteroids along with interleukin-6 inhibitors, or Janus Kinase inhibitors are currently used.


Subject(s)
COVID-19 Drug Treatment , Rheumatology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal/therapeutic use , Critical Illness , Cytokine Release Syndrome , Cytokines , Humans , SARS-CoV-2
14.
1st International Conference on Informatics, ICI 2022 ; : 98-102, 2022.
Article in English | Scopus | ID: covidwho-1932109

ABSTRACT

Epidemics can prove to be disastrous, which has been further emphasized by the recent COVID-19 pandemic, and several countries like India lack sufficient resources to meet the population's needs. It is therefore important that the limited testing and protective resources are utilized such that the disease spread is minimized and their reach to the most vulnerable demographic is maximized. This paper studies the scope of intelligent agents in aiding authorities with such policy-making decisions. This is done by exploring the performance of various action selection methods on custom environments dealing with socio-economic groups and Indian states. Experiments using multi-armed bandit techniques provide greater insight into administrative decisions surrounding resource allocation and their future potential for greater use in similar scenarios. © 2022 IEEE.

15.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: covidwho-1911650

ABSTRACT

Newly emerging SARS-CoV-2 variants may escape monoclonal antibodies (mAbs) and antiviral drugs. By using live virus assays, we assessed the ex vivo inhibition of the B.1 wild-type (WT), delta and omicron BA.1 and BA.2 lineages by post-infusion sera from 40 individuals treated with bamlanivimab/etesevimab (BAM/ETE), casirivimab/imdevimab (CAS/IMD), and sotrovimab (SOT) as well as the activity of remdesivir, nirmatrelvir and molnupiravir. mAbs and drug activity were defined as the serum dilution (ID50) and drug concentration (IC50), respectively, showing 50% protection of virus-induced cytopathic effect. All pre-infusion sera were negative for SARS-CoV-2 neutralizing activity. BAM/ETE, CAS/IMD, and SOT showed activity against the WT (ID50 6295 (4355-8075) for BAM/ETE; 18,214 (16,248-21,365) for CAS/IMD; and 456 (265-592) for SOT) and the delta (14,780 (ID50 10,905-21,020) for BAM/ETE; 63,937 (47,211-79,971) for CAS/IMD; and 1103 (843-1334) for SOT). Notably, only SOT was active against BA.1 (ID50 200 (37-233)), whereas BA.2 was neutralized by CAS/IMD (ID50 174 (134-209) ID50) and SOT (ID50 20 (9-31) ID50), but not by BAM/ETE. No significant inter-variant IC50 differences were observed for molnupiravir (1.5 ± 0.1/1.5 ± 0.7/1.0 ± 0.5/0.8 ± 0.01 µM for WT/delta/BA.1/BA.2, respectively), nirmatrelvir (0.05 ± 0.02/0.06 ± 0.01/0.04 ± 0.02/0.04 ± 0.01 µM) or remdesivir (0.08 ± 0.04/0.11 ± 0.08/0.05 ± 0.04/0.08 ± 0.01 µM). Continued evolution of SARS-CoV-2 requires updating the mAbs arsenal, although antivirals have so far remained unaffected.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
16.
Data Science for COVID-19: Volume 2: Societal and Medical Perspectives ; : 397-422, 2021.
Article in English | Scopus | ID: covidwho-1872866

ABSTRACT

The coronavirus family is as old as the 1930s when it first showed symptoms in chicken. The virus thereafter kept evolving and it has significantly taken over a large percentage of people worldwide in the form of this new pandemic. As of the present day, there is no treatment available for coronavirus disease 2019 (COVID-19) (caused by the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]), although supportive therapy and preventive measures have shown a tremendous control rate among certain patients. Drugs like remdesivir, camostat, nafamostat, ritonavir/lopinavir, several monoclonal antibodies, and CPs are in their early phases of trials. There are approved by the WHO under an emergency use authorization program. Favipiravir has entered its phase 3 clinical trial and is supported by evidence to show no or less adverse effects in patients infected with SARS-CoV-2. Vaccine development is accelerating its pace, and vaccines will probably become available by the end of the year 2020. © 2022 Elsevier Inc.

17.
Antiviral Res ; 203: 105349, 2022 07.
Article in English | MEDLINE | ID: covidwho-1866862

ABSTRACT

Monoclonal antibodies (mAbs) that are specific to SARS-CoV-2 can be useful in diagnosing, preventing, and treating the coronavirus (COVID-19) illness. Strategies for the high-throughput and rapid isolation of these potent neutralizing antibodies are critical toward the development of therapeutically targeting COVID-19 as well as other infectious diseases. In the present study, a single B-cell cloning method was used to screen the Wuhan-Hu-1 strain of SARS-CoV-2 receptor-binding domain (RBD) specific, high affinity, and neutralizing mAbs from patients' blood samples. An RBD-specific antibody, SAR03, was discovered that showed high binding (ELISA and SPR) and neutralizing activity (competitive ELISA and pseudovirus-based reporter assay) against the Wuhan-Hu-1 strain of SARS-CoV-2. Mechanistic studies on human cells revealed that SAR03 competes with the ACE-2 receptor for binding with the RBD domain (S1 subunit) present in the spike protein of SARS-CoV-2. This study highlights the potential of the single B cell cloning method for the rapid and efficient screening of high-affinity and effective neutralizing antibodies for SARS-CoV-2 and other emerging infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Cloning, Molecular , Humans , Spike Glycoprotein, Coronavirus
18.
Expert Opin Biol Ther ; 22(6): 763-780, 2022 06.
Article in English | MEDLINE | ID: covidwho-1860687

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected more than 529 million people, and today the world is facing different mutant strains of the virus, leading to increased morbidity rates, fatality rates, and surfacing re-infections. Various therapies, such as prophylactic treatments, repurposed drug treatments, convalescent plasma, and polyclonal antibody therapy have been developed to help combat the coronavirus disease 2019 (COVID-19). AREA COVERED: This review article provides insights into the basic aspects of monoclonal antibodies (mAbs) for the therapy of COVID-19, as well as its advancement in terms of clinical trial and current approval status. EXPERT OPINION: Monoclonal antibodies represents the most effective and viable therapy and/or prophylaxis option against COVID-19, and have shown a reduction of the viral load, as well as lowering hospitalizations and death rates. In different countries, various mAbs are undergoing different phases of clinical trials, with a few of them having entered phases III and IV. Due to the soaring number of cases worldwide, the FDA has given emergency approval for the mAb combinations bamlanivimab with etesevimab and casirivimab with imdevimab.


Subject(s)
COVID-19 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
19.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1855647

ABSTRACT

The dramatic experience with SARS-CoV-2 has alerted the scientific community to be ready to face new epidemics/pandemics caused by new variants. Among the therapies against the pandemic SARS-CoV-2 virus, monoclonal Antibodies (mAbs) targeting the Spike glycoprotein have represented good drugs to interfere in the Spike/ Angiotensin Converting Enzyme-2 (ACE-2) interaction, preventing virus cell entry and subsequent infection, especially in patients with a defective immune system. We obtained, by an innovative phage display selection strategy, specific binders recognizing different epitopes of Spike. The novel human antibodies specifically bind to Spike-Receptor Binding Domain (RBD) in a nanomolar range and interfere in the interaction of Spike with the ACE-2 receptor. We report here that one of these mAbs, named D3, shows neutralizing activity for virus infection in cell cultures by different SARS-CoV-2 variants and retains the ability to recognize the Omicron-derived recombinant RBD differently from the antibodies Casirivimab or Imdevimab. Since anti-Spike mAbs, used individually, might be unable to block the virus cell entry especially in the case of resistant variants, we investigated the possibility to combine D3 with the antibody in clinical use Sotrovimab, and we found that they recognize distinct epitopes and show additive inhibitory effects on the interaction of Omicron-RBD with ACE-2 receptor. Thus, we propose to exploit these mAbs in combinatorial treatments to enhance their potential for both diagnostic and therapeutic applications in the current and future pandemic waves of coronavirus.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry
20.
Gene Rep ; 27: 101619, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1819494

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.

SELECTION OF CITATIONS
SEARCH DETAIL